Deep Reading
“When in doubt go to the library.” – J.K.Rowling
Catalog
Article1: What Are You Going to Do With That?
What Are You Going to Do With That?
William Deresiewicz(《国家》杂志撰稿人和《新共和》杂志编辑)在斯坦福大学的演讲
The question my title poses, of course, is the one that is classically aimed at humanities majors. What practical value could there possibly be in studying literature or art or philosophy? So you must be wondering why I’m bothering to raise it here, at Stanford, this renowned citadel of science and technology. What doubt can there be that the world will offer you many opportunities to use your degree?
(学习文学、艺术或哲学能有什么用呢?所以你肯定纳闷,我为什么在在以科技堡垒而闻名的斯坦福提出这个问题呢?在大学学位给人带来众多机会的问题上还有什么可怀疑的吗?)
But that’s not the question I’m asking. By “do” I don’t mean a job, and by “that” I don’t mean your major. We are more than our jobs, and education is more than a major. Education is more than college, more even than the totality of your formal schooling, from kindergarten through graduate school. By “What are you going to do,” I mean, what kind of life are you going to lead? And by “that,” I mean everything in your training, formal and informal, that has brought you to be sitting here today, and everything you’re going to be doing for the rest of the time that you’re in school.
(但那不是我提出的问题。这里的“做”并不是指工作,“那”并不是指你的专业。我们不仅仅是要个工作,教育不仅仅是学一门专业。教育也不仅仅是上大学,甚至也不仅是从幼儿园到研究生院的正规学校教育。我说的“你要做什么”的意思是你要过什么样的生活?我所说的“那”指的是你得到的正规或非正规的任何训练, 那些把你送到这里来的东西,你在学校的剩余时间里将要做的任何事。)
git使用
1.0 第一件事git config
git config --list --show-origin
查看所有git配置以及所在文件- 使用
git config --global
可以设置git的基本信息(如用户名、邮箱),使用--unset
取消设置- 配置你的名称、邮箱以及编辑器
git config --global user.name "191220000-Zhang San" |
2.0 初始化仓库
- 本地仓库:
git init
创建一个新的 git 仓库,其数据会存放在一个名为.git
的目录下
删除仓库:删除 .git 文件夹
git add <文件名字,*表示全部> |
- 远程仓库:
git clone
克隆远端仓库
git clone <网址> <仓库存放文件夹名> |
Spring Framework
所有的Java云平台都能够使用基于JAR的打包方式,WAR文件只在一些云平台上能够运行。
Pom.xml 更换 Maven 源
<?xml version="1.0" encoding="UTF-8"?> |
Tight Coupling 紧耦合
在Spring框架以前,使用排序算法需要将算法实例化
public class ComplexBusinessService { |
Good code has loose coupling.
移除依赖项的实例化可以移除紧耦合
public class ComplexBusinessService { |
Spring Framework instantiates objects and populates the dependencies.
LeetCode100 错题本
Hash
字母异位词
排序每一个单词,就知道是不是异位词。
两数之和
从数组中,找到nums[i] + nums[j] == target
,并返回{ i, j }
。
思路是双重循环,遍历每一个元素,求和是否为target。
然而,双重循环需要O(N2)的复杂度。因此,可以使用一张表,使用containsKey
方法识别是否存在当前i的target - nums[i]
,即可减少一重循环。
关键思想
用Map高效率查找,减少一重循环。
最长连续序列
从乱序数组中,找到最长连续(数组中不一定连续)的序列。要求O(N)。
首先用数组的值存入哈希表,然后遍历数组,判断map.constains(curNum++)
。
然而,即使这样还是效率不够高。
优化
- 中间值不进入循环,序列开始值才进入,使用
!contains(curNum - 1)
判断是否为序列开始值 - 去重,不要哈希表,不需要键值对,使用哈希Set,只存储值。
关键思想
去重;不处理中间值
Markdown模板
一号标题
Title 2
三号标题
Title 4
五号标题
Title 6
标题 | 标题 | 标题 |
---|---|---|
左对齐 | 两端对齐 | 右对齐 |
- Unordered List
- Unordered List
- Ordered List
2. Ordered List
- [x] TO-DO List
- [] TO-DO List
Delete Line
Blod
Italic
Code
E=MC2
Link
[1]Hello, World!
public static void main(String[] args) { |
--- auto_detect: ture |
No Silver Bullet
By Brooks
[!NOTE]
Note that it is a note.
[!WARNING]
WARNING!
[!DANGER]
Notice the DANGER!
[!SUCCESS]
Now it is SUCCESS.
[!INFO]
Here is some INFO.
primary 提示块标签
Hello World! ↩︎
DP 设计模式
策略模式
class MallardDuck extends Duck { |
识别应用中变化的方面,把它们和不变的方面分开。
针对接口编程,而不是针对实现编程。
// Implement |
优先使用组合而不是继承。
summary
策略模式定义了算法族并分别封装。策略让算法变化独立于使用它的客户。
PyEcharts 数据可视化
1.0 Bar 柱状图
from pyecharts.charts import Bar |
- 效果
SpringBoot 支付模块
动态规划学习指南
Before starting the topic let me introduce myself. I am a Mobile Developer currently working in Warsaw and spending my free time for interview preparations. I started to prepare for interviews two years ago. At that time I should say I could not solve the two sum problem. Easy problems seemed to me like hard ones so most of the time I had to look at editorials and discuss section. Currently, I have solved ~800 problems and time to time participate in contests. I usually solve 3 problems in a contest and sometimes 4 problems. Ok, lets come back to the topic.
Recently I have concentrated my attention on Dynamic Programming cause its one of the hardest topics in an interview prep. After solving ~140 problems in DP I have noticed that there are few patterns that can be found in different problems. So I did a research on that and find the following topics. I will not give complete ways how to solve problems but these patterns may be helpful in solving DP.